
44 The Delphi Magazine Issue 48

Delphi Memory Consumption
by Brian Long

This article looks into a possible
problem with Delphi and small

API utility applications, and also
investigates how to calculate the
amount of memory a Delphi appli-
cation is using at any given time.

To give a context for the article,
it is useful to see a question that
was recently sent to the Delphi
Clinic:

‘I am writing an API-only utility in
Delphi 3, which I have working in an
EXE of only 20Kb. However, its
memory footprint is 1,220Kb! The
EXE is only using API calls, huge
strings and PChars, but it insists on
linking in OLE32.DLL and
OLEAUT32.DLL. After much investi-
gation, it appears the reason is a call
to a Variant clear function
(VariantClear) which comes from
OLEAUT32.DLL. The only reason I
can see for this being included is two
variables declared in the System unit
of type Variant (Null and Unas-
signed). Is there any way of creating
a D3/D4 app without these DLLs
being statically linked?’

I’ve seen this question a couple
of times now, both on a newsgroup
and mailed to me. It challenges the
premise that Delphi is just as good
for writing API-level utilities as it is
for writing more complete VCL
form-based applications. I wonder
what the answer will be...

First of all, we need an API-only
application that makes use of no
VCL units, to test the problem with
(provided as APIProg.Dpr on this
month’s disk). Having got that, we
then need to identify how much
memory a Delphi application is
using at any given time. Of course,
if you are running under Windows
NT, this is easy: the Task Manager
has a page of running processes
that displays the size of the
process address space. But what
about Windows 95 and 98?

How Much Memory
Are We Using?
Before investigating the original
Delphi Clinic question, we will go
off on a digression.

The answer to the question ‘How
much memory is my program using
at runtime?’ has various answers.
You might mean ‘How many bytes
of memory has my program allo-
cated for its various needs with
GetMem, AllocMem etc, and also with
various object constructors being
called?’ But you might also mean
‘How much storage has Windows set
aside for my application’s code and
data requirements?’

With Windows NT in the equa-
tion, you may also be referring to
your application’s working set size
(a Windows NT concept not sup-
ported by Windows 95/98). This
last option can be examined using
the GetProcessWorkingSetSize NT
API (not supported under Win-
dows 95/98). For a more generic
solution, let’s look at the first two
ideas.

API Analysis
Win32 has a VirtualQuery API.
Given an address, it will give you
information on the block of
memory containing that address,
including the block’s size and
whether Windows has allocated
any storage for it.

One approach would be to start
at the beginning of your process’s
accessible address space, and call
VirtualQuery to see if that block
has been allocated to you. Then
increment the address by the size
of that block, and do it again. This
can be continued until you reach
the end of your address range. The
accessible address range can be
obtained through a call to the
GetSystemInfoAPI. You could make
up a function like the one in Listing
1 to work this out.

Notice that the code caters for
limits in Delphi 2 and 3, which
cannot handle integer values
greater than $7FFFFFFF. Since the
final memory region examined will
more than likely cause RangeStart
to be given a value of $80000000,
causing an integer overflow
(which I found, to my chagrin), the
code checks if the while loop con-
dition would fail with a subtraction

function CommittedMemorySize: DWord;
var
MBI: TMemoryBasicInformation;
SI: TSystemInfo;
RangeStart: Pointer;

begin
Result := 0;
GetSystemInfo(SI);
RangeStart := SI.lpMinimumApplicationAddress;
while DWord(RangeStart) < DWord(SI.lpMaximumApplicationAddress) do begin
VirtualQuery(RangeStart, MBI, SizeOf(MBI));
//Only get committed memory (storage allocated for this)
if MBI.State = MEM_COMMIT then
Inc(Result, MBI.RegionSize);

//Delphi 2 & 3 could only handle $7FFFFFFF as biggest integral number
//Last region is likely to end at $80000000. To avoid integer
//overflow, we'll do a comparison and bypass the addition
if DWord(SI.lpMaximumApplicationAddress)-MBI.RegionSize
>= DWord(RangeStart) then
Inc(PChar(RangeStart), MBI.RegionSize)

else
//If overflow would have occurred, loop is over
Break

end;
end;

➤ Listing 1

➤ Figure 1: The -HM command-
line switch causes Delphi 4 to
display memory usage.

August 1999 The Delphi Magazine 45

rather than an addition. If it would,
the loop is explicitly terminated.

Listing 1 checks only for commit-
ted memory. A page of committed
memory is one that has physical
storage allocated for it, either in
memory or on disk. Apart from a
free page, which is self-
explanatory, the only other type of
memory page is a reserved page. A
reserved page is a memory page
from the process’s virtual address
space that has been set aside for
future use, but for which no physi-
cal storage has yet been allocated.
Checking only for committed
memory means that we are totting
up the amount of allocated storage
for a program, for all the code
loaded from the EXE and DLLs, as
well as all their data.

RTL Analysis
So that caters for calculating all the
memory Windows has allocated
for your process. Now how about
the memory your process has
actively requested?

This is very easy in Delphi 2 or
higher, as the System unit has two
variables that we can use.
AllocMemCount indicates the
number of requested memory allo-
cations that have yet to be freed
and AllocMemSize tells you how
many bytes are currently allocated
by your program.

In a normal Delphi application,
AllocMemSize will probably keep
growing in fits and starts, due to
the VCL allocating internal helper
objects and heap-based records,
as the application tries to do vari-
ous internal housekeeping. Here
and there it will also decrease. If
you see a constant rise in this
value, then it is time to worry about
your code causing memory leaks.

A word of warning regarding the
use of AllocMemSize and Alloc-
MemCount is warranted here. If you
are writing an application, and also
one or more DLLs to go with it, and
you have decided to use the shared
memory manager (by adding
DelphiMM to your uses clause), then
these variables should be avoided.
Instead you should call
GetAllocMemCount and GetAllocMem-
Size from the DelphiMM unit.

The Delphi 4 (and later) IDE sup-
port a command-line switch -HM (or
/HM) that causes memory size infor-
mation to be added to the main IDE
window’s caption (see Figure 1).
This switch was undocumented in
Delphi 4 but has been documented
for version 5.

We can do exactly the same
thing in any of our programs by
enabling a timer if the com-
mand-line is present. The timer can
read from the relevant variables
(or call the functions) and modify
the caption bar. To find a
command-line switch, users of
Delphi 4 (and higher) can use the

routine FindCmdLineSwitch. Earlier
versions have to find it manually.

Figure 2 shows a sample pro-
gram (MemUse.Dpr on this
month’s disk) started with a -HM
command-line. Listing 2 has the
pertinent code. The program has a
couple of buttons that respec-
tively create a bunch of edit con-
trols, adding them to a list, and
destroy them, so you can see the
memory count fluctuating. With
the edit controls visible in the
screen shot, Windows has allo-
cated $1AB,000 bytes for my appli-
cation’s total requirements. The
program itself has 764 memory
allocations still in use, totalling
64,868 bytes.

As well as the -HM command-line
switch, Delphi 4 also introduced
-HV or /HV. This causes Delphi to
keep checking the status of its
heap for errors. If an error is found,
the error code is written on the
main window’s caption bar. If we
wish, we can also replicate this
behaviour by repetitively calling
the GetHeapStatus function from
the System or DelphiMM unit. Listing
3 shows a suitable routine, using
textual descriptions as well as the
heap error code number for (an
arguable amount of) clarity.

Having checked the complex
memory management code in
GetMem.Inc, it seems that
GetHeapStatus will only report a

procedure TForm1.FormCreate(Sender: TObject);
function FindHMCommand: Boolean;
{$ifdef DelphiLessThan4}
var I: Integer;
begin
Result := False;
for I := 1 to ParamCount do
if (UpperCase(ParamStr(I))='/HM') or (UpperCase(ParamStr(I))='-HM') then
Result := True;

{$else}
begin
Result := FindCmdLineSwitch('HM', ['/', '-'], True)

{$endif}
end;

begin
if FindHMCommand then begin
tmrHeapMonitor.Enabled := True; //Enable heap monitoring (via timer)
tmrHeapMonitor.OnTimer(tmrHeapMonitor); //Make the timer tick straight away

end;
EditList := TList.Create;

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
EditList.Free

end;
procedure TForm1.tmrHeapMonitorTimer(Sender: TObject);
begin
Application.MainForm.Caption := Format(
'%s (App: Blocks=%d Bytes=$%x (%2:d) Win32: Committed=$%x (%3:d))',
[Application.Title, AllocMemCount, AllocMemSize, CommittedMemorySize]);

end;

➤ Figure 2

➤ Listing 2

46 The Delphi Magazine Issue 48

subset of errors. Many of the
helper routines set a variable to
indicate the current error status.
GetHeapStatus immediately over-
writes this variable with cHeapOkon
entry. Consequently, you are only
likely to see cBadCurAlloc, cBad-
UsedBlock, cBadNextBlock, cBad-
FreeList, cBadFreeBlock and
cBadBalance. If you have Turbo
Assembler, the RTL source, and
some nerve, you could fix the prob-
lem by commenting out the offend-
ing line and recompiling the RTL
and VCL source with the
Inprise-supplied makefile. This
would only help in the case of
standalone applications: the
Inprise-supplied runtime packages
cannot be recompiled.

The THeapStatus record returned
by GetHeapStatus has various fields
that give more details on the quan-
tity of memory allocated by your
application, all of which are
described in the online help.

Back To The Story
Now that we have a couple of ways
of seeing how much memory our
program uses, we can get back to
the original question. You may
recall we needed an API-only appli-
cation to test the problem with. As
mentioned above, this month’s
disk has a project called
APIProg.Dpr that will do. It uses

Windows API calls to create a main
window, and has a menu that
allows you to display an About box,
and draw coloured lines on the
main window. In addition, it
employs Windows timer messages
to constantly write on the caption
bar the amount of committed
memory Windows has set aside for
this application (using code from
Listing 1).

The details of how the applica-
tion works are beyond the scope of
this article, and for many people
are irrelevant, but it shows the
amount of work required to get a
window and a dialog on the screen
without the help of a framework
like the VCL. Windows are imple-
mented solely in code. Dialogs and
menus have to have resources
defined and linked into the pro-
gram. Lots of messages have to be
handled to get things working.

When the application is
launched in Delphi 2, it claims to
take up 88Kb. Dropping down any
menu causes this to increase to
92Kb, but either way, I’m sure you
will agree this is an acceptably low
overhead.

Memory Hog
If you now launch the application
in Delphi 3 or later, the application
reports 1,348Kb of committed
memory! This figure comes up on
Windows 95/98. Windows NT
causes the program to report

4,684Kb and the NT task manager
reports 1,148Kb. I haven’t looked
into what type of memory blocks
the task manager tots up to calcu-
late its figure. The reason for this
was explained in the question, but
let’s take it step by step anyway, to
see how it was worked out.

Firstly, you should run the appli-
cation through the command-line
tool TDump (included with
Delphi). This will tell you all the
routines, from various DLLs, that
your application is calling. Delphi 2
and 3’s versions of TDump gener-
ate large amounts of information,
including the import table that
contains the details we need.
Delphi 4 adds an -em command line
switch to list the import table only.
From the list that comes out, we
can ignore anything that comes
from the standard Windows DLLs:
KERNEL32.DLL, GDI32.DLL and
USER32.DLL.

The Delphi 2 application has no
imports other than from the stan-
dard Windows DLLs. The Delphi 3
(and later) applications do:
RegOpenKeyExA, RegQueryValueExA
and RegCloseKey, all from
ADVAPI32.DLL, along with Variant-
Clear from OLEAUT32.DLL.

So now we need to examine why
they are used, and whether their
use is really necessary. Figure 3
shows the list of modules in the
program’s memory space (Delphi
3’s View | Modules, or View | Debug
Windows | Modules in Delphi 4 or
later). You can see the unwanted
DLLs, along with another one:
OLE32.DLL. This is probably implic-
itly loaded by OLEAUT32.DLL.

Do We Need The Registry?
Let’s take the registry routines
from ADVAPI32.DLL first. These are
used twice. Firstly, if your program
is running on a Japanese NEC
machine, code in the System unit
checks to see if the

HKEY_LOCAL_MACHINE\SOFTWARE\
Borland\Delphi\
RTL\FPUMaskValue

registry value exists. If it does, the
value is used to customise the
lower ten bits of the floating point
unit (FPU) control register. This

function HeapErrorDesc(Error: Cardinal): String;
begin
//Error code constants come from Delphi's Source\RTL\GetMem.inc file
case Error of
cHeapOk: Result := 'Everything''s fine';
cReleaseErr: Result := 'OS returned an error when we released';
cDecommitErr: Result := 'OS returned an error when we decommited';
cBadCommittedList: Result := 'List of committed blocks looks bad';
cBadFiller1,
cBadFiller2,
cBadFiller3: Result := 'Filler block is bad';
cBadCurAlloc: Result := 'Current allocation zone is bad';
cCantInit: Result := 'Couldn''t initialise';
cBadUsedBlock: Result := 'Used block looks bad';
cBadPrevBlock: Result := 'Prev block before a used block is bad';
cBadNextBlock: Result := 'Next block after a used block is bad';
cBadFreeList: Result := 'Free list is bad';
cBadFreeBlock: Result := 'Free block is bad';
cBadBalance: Result := 'Free list doesn''t match blocks marked free';

end
end;
procedure TForm1.tmrHeapMonitorTimer(Sender: TObject);
var
HS: THeapStatus;

begin
HS := GetHeapStatus;
if HS.HeapErrorCode = cHeapOk then
Application.MainForm.Caption := Format(
'%s (App: Blocks=%d Bytes=$%x (%2:d) Win32: Committed=$%x (%3:d))',
[Application.Title, AllocMemCount, AllocMemSize, CommittedMemorySize])

else
Application.MainForm.Caption := Format('%s (Invalid heap code %d: %s)',
[Application.Title, HS.HeapErrorCode, HeapErrorDesc(HS.HeapErrorCode)])

end;

➤ Listing 3

48 The Delphi Magazine Issue 48

control register value is stored in
the System unit variable
Default8087CW.

Also, the SysInit unit (implicitly
used in an application written in
Delphi 3 or later, much like the
System unit) tries to find Delphi
resource modules by calling
LoadResourceModule. This System
unit function looks for special DLLs
with a name the same as the appli-
cation, and an extension matching
the current Windows locale
three-letter abbreviated language
name (ENG for British English). This
would be a language and country
translation of the application’s
form and string resources. Then it
looks for a file with just the first two
out of these three file extension
letters (EN for English). This would
be a language translation,
independent of country.

Before it tries either of these, it
checks in the

HKEY_CURRENT_USER\Software\
Borland\Delphi\Locales

and

HKEY_CURRENT_USER\Software\
Borland\Locales

registry keys to see if there are
application-specific file extension
overrides it should be using.

So on a non-Japanese machine,
the registry will be implicitly
accessed, regardless of our
desires. You could remove
ADVAPI32.DLL from memory some
time after the program starts up
but, having tested this, you gain
nothing by doing so. The memory
consumption does not drop at all.
Evidently, ADVAPI32.DLL does not
consume any working space for
itself. In any case, even if you do

remove it ADVAPI32.DLL could well
be used implicitly by your applica-
tion anyway, thanks to USER32.DLL
importing some of its routines
(running TDump across
USER32.DLL would verify this). If
this happened after your removing
it, you would get Access Violations
which would be very hard to track
down.

Do We Need OLE Calls?
Now, onto OLEAUT32.DLL. The only
call the application makes to this
DLL is VariantClear (highlighted in
Figure 3). This API is only called
from within a System unit function
VarClear, actually implemented as
_VarClear. VarClear is not called
by the code in the project, but the
System unit calls it from many Vari-
ant support routines. It also calls it
from _VarClr, a routine that is auto-
matically called by com-
piler-generated code to tidy up
Variant variables when they go out
of scope.

Since there is no explicit Variant
manipulation in the program, I
agree that the compiler is calling
_VarClr to tidy up the two Variant
variables defined in the Systemunit,
when the program is closing down.
In Delphi 3 and later, these two
Variants, Null and Unassigned (see
online help for more details about
them), are accompanied by
another one, EmptyParam. This
means that two or three calls to

_VarClr at the end
of the program
cause calls to
VarClear, which in
turn cause calls to
VariantClear.

Delphi 2 does not
appear to clear
up these global
Variant variables

automatically, which is why the
memory consumption is so small.
However, if you use the SysUtils
unit, Delphi 2 apps will pull in the
DLL, as explained by Hallvard
Vassbotn in Issue 14’s Tips & Tricks
column.

In the case of Delphi 3 and later,
we can do something about these
calls. The implementation of
VarClear is in assembler, but in
summary, it will not call
VariantClear (from the DLL) if the
Variant is marked as empty. So
now we have all that we need to
solve the problem. The steps will
be as follows. Firstly, set the
System Variant variables so they
are marked as empty. Then unload
the OLEAUT32.DLL from memory.

The APIProg.Dpr project has all
the relevant code in it to accom-
plish the goal, or at least get as
close to it as we can. The question
asked if we can avoid statically
linking to the unwanted DLLs. Well
no, but we can unload them if we
know they won’t be used again.
Listing 4 shows a procedure that
deals with the memory overhead
in an API-oriented application.

Note that the sample project
only calls this routine if you pass a
command-line parameter (which
can be anything you like). Use Run |
Parameters to set one up. Also, any
subsequent use of any Variant
variables or parameters will cause
Access Violations, as the impor-
tant support library has been
unloaded.

Null and Unassigned caused me a
problem for a while. Although they
are declared in the System unit as
variables, we are unable to modify
them. The compiler rejects any
attempt to do so and treats them

➤ Figure 3

procedure ReduceMemoryOverhead;
begin
//Stop the RTL wanting to clear System Variants
{$ifndef DelphiLessThan4}
TVarData(EmptyParam).VType := varEmpty;
{$endif}
//These two seem to be considered constants, so we hack around
//this by de-referencing the "constant" item's address
TVarData((@Null)^).VType := varEmpty;
TVarData((@Unassigned)^).VType := varEmpty;
//Unload OLEAUT32.DLL, which will in turn unload OLE32.DLL
FreeLibrary(GetModuleHandle('OLEAUT32.DLL'));

end;
...
if ParamCount > 0 then
ReduceMemoryOverhead;

➤ Listing 4

August 1999 The Delphi Magazine 49

as constants (the compiler does
special stuff with a lot of the con-
tents of the System unit). As Listing
4 shows, we can overcome this
problem by taking the address of
each Variant and then de-
referencing it. An irritating kludge,
but never mind, it does the job. To
unload the OLEAUT32.DLL, we pass
its module handle (as returned
from GetModuleHandle) to Free-
Library and in doing so, it will
hopefully take OLE32.DLL with it.

Figure 4 shows the Delphi 3
application running under Win-
dows 9x with just 96Kb of commit-
ted memory (92Kb before any
menus are accessed), and also
shows Delphi 3’s module list.
Figure 3 showed Delphi 4’s module
list.

Is That It?
All this business of unloading the
OLE DLLs works perfectly fine
under Windows 95/98. Unfortu-
nately, though, NT throws a
spanner in the works. It seems that
it is impossible to remove
OLEAUT32.DLL from your address
space, no matter how many times
you pass its module handle to
FreeLibrary.

Obviously this is a problem. Not
an entirely insurmountable one,
though. We can tackle Windows NT
from another angle. In Issue 39,
Hallvard Vassbotn’s article
Slimming The Fat Off Your Apps
discussed the NT process working
set. We can keep our memory
usage down to an acceptable level
by regularly reducing the process

working set size. In
fact, you can set the
working set down to a
value of zero, which
means the process is
swapped out of physi-
cal RAM. Any further
code that needs to
execute will then be
pulled back in, as it is
needed.

The point being
made here is that any
excess space taken up by lit-
tle-used DLLs will be removed from
RAM. Since the OLEAUT32.DLL code
is only used as the program closes,
its code and data should be left out
of memory until the program is
closing down. If OLEAUT32.DLL is
the only cause of the RAM bloat,
then setting the working set to 0
when the program starts up will do
the required job.

So with this information to hand,
let’s get back to the code and see
what needs to change. Normally, to
detect if the program is running
under Windows NT, you can use
the Win32Platform variable from
SysUtils. However, adding
SysUtils to the uses clause for just
one variable is excessive, it will
pull in quite a lot of unnecessary
code. So instead we can use the
corresponding APIs to determine
which platform we are on.

Listing 5 shows the modified ver-
sion of ReduceMemoryOverhead (origi-
nally from Listing 4) with the extra
NT support code in place. Remem-
ber that the application claimed to
take up 4,684Kb of committed
memory? Well, even with this new
code in place it still does. However,

the NT Task Manager shows that
the program (as far as it is con-
cerned) has dropped its memory
size from 1,148Kb down to 464Kb.
So, a definitely noticeable drop.

And Finally...
In summary, if you are very, very
careful, you can get applications
written in Delphi 3 and later to con-
sume an acceptably low amount of
Windows memory. But it does take
work. If Delphi’s linker implicitly
supported delay loading of DLLs,
as does Visual C++, and as Hallvard
Vassbotn wrote about in Issue 43
(Delayloading Of DLLs), the prob-
lem would not arise in the first
place. OLEAUT32.DLL is only called
as the program closes, and so
would only be loaded, briefly, as
the program shuts down.

Acknowledgements
Thanks are due to Andy Strong for
input and advice on this subject.

Brian Long is an independent
consultant and trainer. You can
reach him at brian@blong.com

Copyright @ 1999 Brian Long.
All rights reserved.

➤ Figure 4

procedure ReduceMemoryOverhead;
var
ProcessHandle: THandle;
OSVersionInfo: TOSVersionInfo;

begin
//Stop the RTL wanting to clear System Variants
{$ifndef DelphiLessThan4}
TVarData(EmptyParam).VType := varEmpty;
{$endif}
//These two seem to be considered constants, so we hack around
//this by de-referencing the "constant" item's address
TVarData((@Null)^).VType := varEmpty;
TVarData((@Unassigned)^).VType := varEmpty;
//Unload OLEAUT32.DLL, which will in turn unload OLE32.DLL
FreeLibrary(GetModuleHandle('OLEAUT32.DLL'));
OSVersionInfo.dwOSVersionInfoSize := SizeOf(OSVersionInfo);
if GetVersionEx(OSVersionInfo) and
(OSVersionInfo.dwPlatformID = VER_PLATFORM_WIN32_NT) then begin
ProcessHandle := OpenProcess(PROCESS_ALL_ACCESS, False, GetCurrentProcessID);
//Remove any unimportant code/data from memory
SetProcessWorkingSetSize(ProcessHandle, -1, -1);
CloseHandle(ProcessHandle);

end
end;

➤ Listing 5

	How Much Memory Are We Using?
	API Analysis
	RTL Analysis
	Back To The Story
	Memory Hog
	Do We Need The Registry?
	Do We Need OLE Calls?
	Is then setting the working set to 0
	And Finally...
	Acknowledgements

